Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 274: 116185, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489906

RESUMO

This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.


Assuntos
Antibacterianos , Oxitetraciclina , Antibacterianos/toxicidade , Solo , Ecossistema , Água , Oxitetraciclina/toxicidade
2.
Toxics ; 12(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38393210

RESUMO

Despite widespread industrial use, the environmental safety of hydroquinone (HQ), a benzene compound from plants used in processes like cosmetics, remains uncertain. This study evaluated the ecotoxicological impact of HQ on soil and river environments, utilizing non-target indicator organisms from diverse trophic levels: Daphnia magna, Aliivibrio fischeri, Allium cepa, and Eisenia fetida. For a more environmentally realistic assessment, microbial communities from a river and untreated soil underwent 16S rRNA gene sequencing, with growth and changes in community-level physiological profiling assessed using Biolog EcoPlate™ assays. The water indicator D. magna exhibited the highest sensitivity to HQ (EC50 = 0.142 µg/mL), followed by A. fischeri (EC50 = 1.446 µg/mL), and A. cepa (LC50 = 7.631 µg/mL), while E. fetida showed the highest resistance (EC50 = 234 mg/Kg). Remarkably, microbial communities mitigated HQ impact in both aquatic and terrestrial environments. River microorganisms displayed minimal inhibition, except for a significant reduction in polymer metabolism at the highest concentration (100 µg/mL). Soil communities demonstrated resilience up to 100 µg/mL, beyond which there was a significant decrease in population growth and the capacity to metabolize carbohydrates and polymers. Despite microbial mitigation, HQ remains highly toxic to various trophic levels, emphasizing the necessity for environmental regulations.

3.
Plants (Basel) ; 13(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256746

RESUMO

One strategy to mitigate the emergence of bacterial resistance involves reducing antibiotic doses by combining them with natural products, such as trans-cinnamaldehyde (CIN). The objective of this research was to identify in vitro combinations (CIN + commercial antibiotic (ABX)) that decrease the minimum inhibitory concentration (MIC) of seven antibiotics against 14 different Gram-positive and Gram-negative pathogenic bacteria, most of them classified as ESKAPE. MIC values were measured for all compounds using the broth microdilution method. The effect of the combinations on these microorganisms was analyzed through the checkboard assay to determine the type of activity (synergy, antagonism, or addition). This analysis was complemented with a kinetic study of the synergistic combinations. Fifteen synergistic combinations were characterized for nine of the tested bacteria. CIN demonstrated effectiveness in reducing the MIC of chloramphenicol, streptomycin, amoxicillin, and erythromycin (94-98%) when tested on Serratia marcescens, Staphylococcus aureus, Pasteurella aerogenes, and Salmonella enterica, respectively. The kinetic study revealed that when the substances were tested alone at the MIC concentration observed in the synergistic combination, bacterial growth was not inhibited. However, when CIN and the ABX, for which synergy was observed, were tested simultaneously in combination at these same concentrations, the bacterial growth inhibition was complete. This demonstrates the highly potent in vitro synergistic activity of CIN when combined with commercial ABXs. This finding could be particularly beneficial in livestock farming, as this sector witnesses the highest quantities of antimicrobial usage, contributing significantly to antimicrobial resistance issues. Further research focused on this natural compound is thus warranted for this reason.

4.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068678

RESUMO

Tannic acid (TA) is a key tannin extensively used in the leather industry, contributing to around 90% of global leather production. This practice leads to the generation of highly polluting effluents, causing environmental harm to aquatic ecosystems. Additionally, tannins like TA degrade slowly under natural conditions. Despite efforts to reduce pollutant effluents, limited attention has been devoted to the direct environmental impact of tannins. Moreover, TA has garnered increased attention mainly due to its applications as an antibacterial agent and anti-carcinogenic compound. However, our understanding of its ecotoxicological effects remains incomplete. This study addresses this knowledge gap by assessing the ecotoxicity of TA on non-target indicator organisms in both water (Vibrio fischeri, Daphnia magna) and soil environments (Eisenia foetida, Allium cepa), as well as natural fluvial and edaphic communities, including periphyton. Our findings offer valuable insights into TA's ecotoxicological impact across various trophic levels, underscoring the need for more comprehensive investigations in complex ecosystems. Our results demonstrate that TA exhibits ecotoxicity towards specific non-target aquatic organisms, particularly V. fischeri and D. magna, and phytotoxicity on A. cepa. The severity of these effects varies, with V. fischeri being the most sensitive, followed by D. magna and A. cepa. However, the soil-dwelling invertebrate E. foetida shows resistance to the tested TA concentrations. Furthermore, our research reveals that substantial TA concentrations are required to reduce the growth of river microbial communities. Metabolic changes, particularly in amino acid and amine metabolism, are observed at lower concentrations. Notably, the photosynthetic yield of river periphyton remains unaffected, even at higher concentrations. In contrast, soil microbial communities exhibit greater sensitivity, with significant alterations in population growth and metabolic profiles at a very low concentration of 0.2 mg/L for all metabolites. In summary, this study offers valuable insights into the ecotoxicological effects of TA on both aquatic and terrestrial environments. It underscores the importance of considering a variety of non-target organisms and complex communities when assessing the environmental implications of this compound.

5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069283

RESUMO

Global prevalence of antibiotic residues (ABX) in rivers requires ecotoxicological impact assessment. River microbial communities serve as effective bioindicators for this purpose. We quantified the effects of eight commonly used ABXs on a freshwater river microbial community using Biolog EcoPlates™, enabling the assessment of growth and physiological profile changes. Microbial community characterization involved 16S rRNA gene sequencing. The river community structure was representative of aquatic ecosystems, with the prevalence of Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. Our findings reveal that all ABXs at 100 µg/mL reduced microbial community growth and metabolic capacity, particularly for polymers, carbohydrates, carboxylic, and ketonic acids. Chloramphenicol, erythromycin, and gentamicin exhibited the highest toxicity, with chloramphenicol notably impairing the metabolism of all studied metabolite groups. At lower concentrations (1 µg/mL), some ABXs slightly enhanced growth and the capacity to metabolize substrates, such as carbohydrates, carboxylic, and ketonic acids, and amines, except for amoxicillin, which decreased the metabolic capacity across all metabolites. We explored potential correlations between physicochemical parameters and drug mechanisms to understand drug bioavailability. Acute toxicity effects at the river-detected low concentrations (ng/L) are unlikely. However, they may disrupt microbial communities in aquatic ecosystems. The utilization of a wide array of genetically characterized microbial communities, as opposed to a single species, enables a better understanding of the impact of ABXs on complex river ecosystems.


Assuntos
Cianobactérias , Microbiota , Rios/química , Antibacterianos/toxicidade , RNA Ribossômico 16S/genética , Cianobactérias/genética , Cloranfenicol , Carboidratos
6.
Plants (Basel) ; 12(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37176927

RESUMO

The use of synergistic combinations between natural compounds and commercial antibiotics may be a good strategy to fight against microbial resistance, with fewer side effects on human, animal and environmental, health. The antimicrobial capacity of four compounds of plant origin (thymol and gallic, salicylic and gentisic acids) was analysed against 14 pathogenic bacteria. Thymol showed the best antimicrobial activity, with MICs ranging from 125 µg/mL (for Acinetobacter baumannii, Pasteurella aerogenes, and Salmonella typhimurium) to 250 µg/mL (for Bacillus subtilis, Klebsiella aerogenes, Klebsiella pneumoniae, Serratia marcescens, Staphylococcus aureus, and Streptococcus agalactiae). Combinations of thymol with eight widely used antibiotics were studied to identify combinations with synergistic effects. Thymol showed synergistic activity with chloramphenicol against A. baumannii (critical priority by the WHO), with streptomycin and gentamicin against Staphylococcus aureus (high priority by the WHO), and with streptomycin against Streptococcus agalactiae, decreasing the MICs of these antibiotics by 75% to 87.5%. The kinetics of these synergies indicated that thymol alone at the synergy concentration had almost no effect on the maximum achievable population density and very little effect on the growth rate. However, in combination with antibiotics at the same concentration, it completely inhibited growth, confirming its role in facilitating the action of the antibiotic. The time-kill curves indicated that all the combinations with synergistic effects were mainly bactericidal.

7.
Sci Rep ; 12(1): 18460, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323748

RESUMO

The aim of this study was to analyse the microbicidal and microbiostatic activity of S. montana hydrolate L., the water-soluble fraction of the hydro-distillation process used to obtain the essential oil, on 14 Gram-positive and Gram-negative bacteria and a fungus of clinical interest. To consider whether this hydrolate is a more environmentally friendly alternative to traditional antibiotics, its effect on non-target microorganisms in the aquatic and terrestrial environment was analysed using natural soil and river microorganism communities, characterized through 16S rRNA gene sequencing. Results showed that S. montana hydrolate was especially effective (25% v/v concentration) against Pasteurella aerogenes, Streptococcus agalactiae and Acinetobacter baumannii (priority 1, WHO). It was also a microbicide for a further 7 bacterial strains and the fungus Candida albicans (50% v/v concentration). The river and soil communities exposed to the hydrolate showed a decrease in their growth, as well as a decrease in their ability to metabolize polymers and carbohydrates (soil microorganisms) and polymers, carboxylic and ketone acids (river microorganisms). Hydrolates could be an alternative to conventional antibiotics, but their impact on the environment must be taken into account.


Assuntos
Anti-Infecciosos , Satureja , Antibacterianos/farmacologia , Bactérias Gram-Negativas , RNA Ribossômico 16S , Montana , Bactérias Gram-Positivas , Bactérias/genética , Fungos/genética , Solo , Polímeros
8.
Chemosphere ; 305: 135473, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760138

RESUMO

Antibiotics' (ATBs) occurrence in soil ecosystems has a relevant effect in the structure and functionality of edaphic microbial communities, mainly because of their amendment with manure and biosolids that alter their key ecological functions. In this study, the impact of eight widely consumed ATBs on a natural soil microbial community, characterized through 16 S rRNA gene sequencing, was evaluated. Changes induced by the ATBs in the growth of the soil microbiota and in the community-level physiological profiling (CLPP), using Biolog EcoPlates™, were measured as endpoint. The eight assayed ATBs lead to a significant decrease in the growth of soil microbial communities in a dose-dependent way, ordered by its effect as follows: chloramphenicol > gentamycin > erythromycin > ampicillin > penicillin > amoxicillin > tetracycline > streptomycin. Chloramphenicol, gentamycin, and erythromycin adversely affected the physiological profile of the soil community, especially its ability to metabolize amino acids, carboxylic and ketonic acids and polymers. The analysis of the relationship between the physico-chemical properties of ATBs, as well as their mechanism of action, revealed that, except for the aminoglycosides, each ATB is influenced by a different physico-chemical parameters, even for ATBs of the same family. Significant effects were detected from 100 µg mL to 1, concentrations that can be found in digested sludge, biosolids and even in fertilized soils after repeated application of manure, so cumulative and long-term effects of these antibiotics on soil environment cannot be ruled out.


Assuntos
Microbiota , Solo , Antibacterianos/toxicidade , Biossólidos , Cloranfenicol/farmacologia , Eritromicina/farmacologia , Gentamicinas/farmacologia , Esterco , Solo/química , Microbiologia do Solo
9.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565952

RESUMO

Guarana (Paullinia cupana) is a widely consumed nutraceutical with various health benefits supported by scientific evidence. However, its indirect health impacts through the gut microbiota have not been studied. Caenorhabditis elegans is a useful model to study both the direct and indirect effects of nutraceuticals, as the intimate association of the worm with the metabolites produced by Escherichia coli is a prototypic simplified model of our gut microbiota. We prepared an ethanoic extract of guarana seeds and assessed its antioxidant capacity in vitro, with a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and in vivo, utilizing C. elegans. Additionally, we studied the impact of this extract on C. elegans lifespan, utilizing both viable and non-viable E. coli, and assessed the impact of guarana on E. coli folate production. The extract showed high antioxidant capacity, and it extended worm lifespan. However, the antioxidant and life-extending effects did not correlate in terms of the extract concentration. The extract-induced life extension was also less significant when utilizing dead E. coli, which may indicate that the effects of guarana on the worms work partly through modifications on E. coli metabolism. Following this observation, guarana was found to decrease E. coli folate production, revealing one possible route for its beneficial effects.


Assuntos
Paullinia , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans , Escherichia coli , Ácido Fólico/farmacologia , Longevidade , Paullinia/química , Extratos Vegetais/farmacologia
10.
J Environ Manage ; 287: 112303, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714735

RESUMO

Citronellol is an acyclic monoterpenoid with a wide range of pharmacological activities (antibacterial, antifungal, anti-lice, repellent, lipolytic, anti-allergic, anti-inflammatory, antispasmodic, antidiabetic, anti-cholesterol, among other) and potential to replace synthetic products. However, the impact of citronellol on the environment remains unknown. We analysed, for the first time, the environmental impact of citronellol on river and soil environments using non-target model organisms and natural populations. The acute toxicity of citronellol on the aquatic invertebrate Daphnia magna, the plant Allium cepa L and the earthworm Eisenia fetida was quantified. The effect of citronellol in a river ecosystem was analysed using river periphyton communities taxonomically characterised and a river microbial community characterised through 16 S rRNA gene sequencing. Finally, a microbial community from natural soil was used to monitor the effect of citronellol on the soil ecosystem. The results showed that E. fetida was most sensitive to citronellol (LC50 = 12.34 mg/L), followed by D. magna (LC50 = 14.11 mg/L). Citronellol affected the photosynthesis of the fluvial periphyton (LC50 = 94.10 mg/L) and was phytotoxic for A. cepa. Furthermore, citronellol modified the growth and metabolism of both fluvial (LC50 = 0.19% v/v) and edaphic (LC50 = 5.07% v/v) bacterial populations. The metabolism of the microorganisms in the soil and water exposed to citronellol decreased with respect to the control, especially their ability to metabolise carbohydrates. Our results show that citronellol has a negative impact on the environment. Although acute effects cannot be expected, it is necessary to quantify the environmental levels as well as the long-term and persistent effects of this monoterpene.


Assuntos
Oligoquetos , Poluentes do Solo , Monoterpenos Acíclicos , Animais , Rios , Solo , Poluentes do Solo/análise
11.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052598

RESUMO

The growing interest in the cosmetic industry in using compounds of natural and sustainable origin that are safe for humans is encouraging the development of processes that can satisfy these needs. Chlorogenic acid (CHA), caffeic acid (CAF) and ferulic acid (FA) are three compounds widely used within the cosmetic industry due to their functionalities as antioxidants, collagen modifiers or even as radiation protectors. In this work, two advanced separation techniques with supercritical CO2 are used to obtain these three compounds from Calendula officinalis, and these are then evaluated using a computational skin permeability model. This model is encompassed by the COSMO-RS model, the calculations of which make it possible to study the behaviour of the compounds in the epidermis. The results show that both CAF and FA are retained in the stratum corneum, while CHA manages to penetrate to the stratum spinosum. These compounds were concentrated by antisolvent fractionation with super-critical CO2 using a Response Surface Methodology to study the effect of pressure and CO2 flow rate. CHA, CAF and FA were completely retained in the precipitation vessel, with concentrations between 40% and 70% greater than in the original extract. The conditions predicted that the optimal overall yield and enrichment achieved would be 153 bar and 42 g/min.

12.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882905

RESUMO

Rosmarinus officinalis L., commonly known as rosemary, has been largely studied for its wide use as food ingredient and medicinal plant; less attention has been given to its edible flowers, being necessary to evaluate their potential as functional foods or nutraceuticals. To achieve that, the phenolic profile of the ethanolic extract of R. officinalis flowers was determined using LC-DAD-ESI/MSn and then its antioxidant and anti-ageing potential was studied through in vitro and in vivo assays using Caenorhabditis elegans. The phenolic content was 14.3 ± 0.1 mg/g extract, trans rosmarinic acid being the predominant compound in the extract, which also exhibited a strong antioxidant capacity in vitro and increased the survival rate of C. elegans exposed to lethal oxidative stress. Moreover, R. officinalis flowers extended C. elegans lifespan up to 18%. Therefore, these findings support the potential use of R. officinalis flowers as ingredients to develop products with pharmaceutical and/or nutraceutical potential.

13.
J Med Food ; 23(1): 72-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31545123

RESUMO

The causative relationship between oxidative stress and aging remains controversial, but it is a fact that many of the pathologies of age-related diseases are associated with oxidative stress. Phytochemicals may reduce damage from oxidative stress; the intake of these through diet could represent a strategy to lessen their pathological consequences. The popular and widely consumed licorice (Glycyrrhiza glabra) is a rich source of potential antioxidants. The aim of this study was to investigate whether licorice increases the oxidative stress resistance and lifespan of the animal model Caenorhabditis elegans. Licorice roots ethanolic extract showed in vitro antioxidant activity, with an IC50 of 51.17 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) as free radical. C. elegans pretreated with licorice showed an increase of survival rate when exposed to the oxidant juglone, being this increase up to ∼33.56%. This pretreated population also showed an increase in lifespan of 14.28% at a concentration of 250 µg/mL. In conclusion, we suggest that licorice has a high antioxidant capability both in vitro and in vivo and that this activity may explain the observed extension of lifespan.


Assuntos
Antioxidantes/farmacologia , Glycyrrhiza/química , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Caenorhabditis elegans , Naftoquinonas
14.
J Food Drug Anal ; 27(4): 849-859, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31590756

RESUMO

Different Viola species are known for their traditional use as analgesic, antitussive, febrifuge, hipnotic, analgesic and anti-inflammatory medicinal agents. Additionally, they are considered edible flowers in certain cultures. Thus, the aim of this work was to characterize the phenolic composition and to assess the neuroprotective properties of Viola cornuta and Viola x wittrockiana using in vitro and in vivo methodologies with Caenorhabditis elegans as model. The identification of the phenolic compounds was carried out with a LC-DAD-ESI/MSn. The antioxidant activity of the extracts was determined in vitro using Folin- Ciocalteu, DPPH and FRAP assays and in vivo with a juglone-induced oxidative stress in C. elegans. The neuroprotective properties were evaluated measuring the ability to inhibit CNS enzymes (MAO A, AChE), and the capability to avoid paralyzing the C. elegans CL4176, an Alzheimer disease model. The phenolic content was higher in V. x wittrockiana, being quercetin-3-O-(6-O-rhamnosylglucoside)-7-O-rhamnoside the predominant compound in the extract, which also exhibited a stronger antioxidant capacity in vitro and a higher response to lethal oxidative stress on C. elegans than V. cornuta. Only V. x wittrockiana showed inhibitory effect on CNS enzymes, such as acetylcholinesterase and monoamine oxidase A, but both had protective effect against the paralysis of C. elegans. These findings suggest that the studied V. cornuta and V. x wittrockiana could be interesting candidates for age related neurodegenerative disorder associated with oxidative stress.


Assuntos
Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Viola/química , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Relação Dose-Resposta a Droga , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Fenóis/química , Fenóis/isolamento & purificação , Picratos/antagonistas & inibidores , Relação Estrutura-Atividade
15.
Nutrients ; 10(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567311

RESUMO

Tagetes erecta L. has long been consumed for culinary and medicinal purposes in different countries. The aim of this study was to explore the potential benefits from two cultivars of T. erecta related to its polyphenolic profile as well as antioxidant and anti-aging properties. The phenolic composition was analyzed by LC-DAD-ESI/MSn. Folin-Ciocalteu, DPPH·, and FRAP assays were performed in order to evaluate reducing antiradical properties. The neuroprotective potential was evaluated using the enzymes acetylcholinesterase and monoamine oxidase. Caenorhabditis elegans was used as an in vivo model to assess extract toxicity, antioxidant activity, delayed aging, and reduced ß-amyloid toxicity. Both extracts showed similar phenolic profiles and bioactivities. The main polyphenols found were laricitin and its glycosides. No acute toxicity was detected for extracts in the C. elegans model. T. erecta flower extracts showed promising antioxidant and neuroprotective properties in the different tested models. Hence, these results may add some information supporting the possibilities of using these plants as functional foods and/or as nutraceutical ingredients.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Polifenóis/farmacologia , Tagetes/química , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/análise , Compostos de Bifenilo/metabolismo , Caenorhabditis elegans/metabolismo , Flores/química , Alimento Funcional , Glicosídeos/análise , Glicosídeos/farmacologia , Modelos Animais , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/análise , Fenóis/análise , Picratos/metabolismo , Extratos Vegetais/farmacologia , Plantas Comestíveis , Polifenóis/análise , Especificidade da Espécie , Tagetes/classificação
16.
J. physiol. biochem ; 71(4): 785-793, dic. 2015.
Artigo em Inglês | IBECS | ID: ibc-145730

RESUMO

In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca2+ channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca2+ channel blocker, verapamil (10−6 M), had similar effects. Rock Tea extract had no effect in nominally Ca2+-free high-K+ buffer but significantly inhibited contractions to re-addition of Ca2+. Rock Tea extract inhibited the contractions induced by the L-type Ca2+ channel activator Bay K 8644 (10−5 M) and by phenylephrine (10−6 M). Rock Tea extract and Y-27632 (10−6 M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca2+ currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca2+ channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases


Assuntos
Animais , Ratos , Aorta , Músculo Liso Vascular , Canais de Cálcio , Chá/química , Extratos Vegetais/farmacocinética , Bloqueadores dos Canais de Cálcio/farmacocinética , Doenças Cardiovasculares/prevenção & controle , Vasodilatação
17.
J Physiol Biochem ; 71(4): 785-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26464340

RESUMO

In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.


Assuntos
Anti-Hipertensivos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Extratos Vegetais/farmacologia , Vasodilatadores/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Asteraceae/química , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Avaliação Pré-Clínica de Medicamentos , Masculino , Relaxamento Muscular , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Técnicas de Patch-Clamp , Fenilefrina/farmacologia , Ratos Wistar , Chás de Ervas , Vasodilatação , Verapamil/farmacologia
18.
Res Vet Sci ; 100: 148-52, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890576

RESUMO

Anisakis simplex is a foodborne pathogen that can produce human infections and allergic reactions due to the high consumption of raw fish. The seeds of Myristica fragans (Myristicaceae), popularly known as nutmeg, are worldwide used as a culinary spice due to its flavour and properties in food preservation. A nutmeg extract was prepared, analyzed, screened for cytotoxicity and tested against Anisakis simplex L3 larvae. In order to detect the biologically active constituents of the extract, myristicin was tested on the larvae. An acetylcholinesterase inhibition bioassay was also carried out to investigate the antihelmintic mechanism of action. Our results demonstrate that nutmeg exerts antihelmintic effects on Anisakis simplex, being myristicin one of the active compounds. The extract induced a high rate of dead anisakis at concentrations between 0.5 and 0.7 mg/ml without being considered cytotoxic; however, an inhibition of acetylcholinesterase was discarded as the molecular mechanism involved in the activity.


Assuntos
Anisakis/efeitos dos fármacos , Antinematódeos/farmacologia , Compostos de Benzil/farmacologia , Inibidores da Colinesterase/farmacologia , Dioxolanos/farmacologia , Myristica/química , Pirogalol/análogos & derivados , Derivados de Alilbenzenos , Animais , Anisakis/enzimologia , Anisakis/crescimento & desenvolvimento , Gadiformes/parasitologia , Larva/efeitos dos fármacos , Larva/enzimologia , Larva/crescimento & desenvolvimento , Extratos Vegetais/análise , Pirogalol/farmacologia
19.
Sci Total Environ ; 518-519: 225-37, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25765375

RESUMO

Following soil applications of recycled water and biosolids, pharmaceutical residues can eventually enter the terrestrial environment. In vitro and in vivo assays have largely focused on the acute ecotoxicity of these compounds in aquatic systems. However, studies on the ecotoxicological effects of pharmaceuticals in soil biota are especially scarce. The aim of this study was to investigate the acute toxicity of 18 pharmaceuticals (4 NSAIDs, 5 blood lipid-lowering agents, 6 ß-blockers and 3 antibiotics) that are usually found in the environment by using an Eisenia fetida bioassay. In addition, the presence of these pharmaceuticals in artificial soil was verified at the end of the test. Our results indicate that seven of the studied drugs cause acute adverse effects in E. fetida, in particular, the NSAIDs and the blood lipid-lowering agents. Ibuprofen (LC50=64.80 mg/kg) caused the highest acute toxicity for all tested compounds, followed by diclofenac (LC50=90.49 mg/kg) and simvastatin (LC50=92.70 mg/kg). Other tested pharmaceuticals from NSAIDs and blood lipid-lowering families have toxicity effects, from a LC50=140.87 mg/kg for gemfibrozil to 795.07 mg/kg for lovastatin. Atorvastatin, bezafibrate, ß-blockers and antibiotics showed no detectable lethality in E. fetida. The four NSAIDs showed evidence of modification of their original chemical structure after 14 days so the detected toxicity may be due to the original product as well as their degradation products. The three blood lipid-lowering agents seem to be more stable in soil. From an environmental perspective, the lethal concentrations of the tested drugs are much greater than those reported in wastewater and biosolids, therefore acute toxic effects may be improbable. However, little is known about the accumulation of these substances in soils after regular applications, so accumulative and chronic effects cannot be excluded. Moreover, more studies are needed to determine the role of the degradation products of these pharmaceuticals on terrestrial toxicity.


Assuntos
Preparações Farmacêuticas/química , Poluentes do Solo/toxicidade , Solo/química , Testes de Toxicidade Aguda , Animais , Oligoquetos
20.
Biomed Res Int ; 2014: 549510, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967378

RESUMO

Nematicidal activity of Melaleuca alternifolia essential oil, commonly known as tea tree oil (TTO), was assayed in vitro against L3 larvae of Anisakis simplex. The results showed a mortality of 100% for concentrations between 7 and 10 µL/mL after 48 h of incubation, obtaining an LD50 value of 4.53 µL/mL after 24 hours and 4.27 µL/mL after 48 hours. Concentration-dependent inhibition of acetylcholinesterase was observed for tea tree essential oil showing inhibition values of 100% at 100 µL/mL. This fact suggests that TTO may act as an AChE inhibitor. Terpinen-4-ol was discarded as main larvicide compound as it did not show larvicidal or anticholinesterase activity. The data obtained suggest that the essential oil of Melaleuca alternifolia may have a great therapeutic potential for the treatment of human anisakiasis.


Assuntos
Anisakis/crescimento & desenvolvimento , Anti-Helmínticos/farmacologia , Melaleuca/química , Óleos Voláteis/farmacologia , Animais , Anti-Helmínticos/química , Relação Dose-Resposta a Droga , Humanos , Larva/crescimento & desenvolvimento , Óleos Voláteis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...